Most regional observation networks indicate that dramatic changes have occurred across the Arctic in recent decades, but comparatively little work has been done to assess atmospheric and oceanic responses to the dramatic observed terrestrial changes. Both increases in surface air temperature and a shift in arctic air circulation patterns are likely to contribute to changes in ice distribution. Rising sea level, changes in coastal geography due to shoreline erosion, increased winds, storm surges, and flooding may be the direct results of the depletion of sea ice and the resulting increase in fetch. As the tightly linked land, ocean, and atmosphere systems of the Arctic respond to the effects of climate change, the challenges of modeling the arctic region need to addressed using high spatial resolution data, which current global climate models do not use due to computer resource limitations.

This project emphasizes linking the major arctic and human systems to understand current and likely future interactions through three scientific goals: 1) to estimate the historic and future impacts of variability within the ocean and atmospheric systems on terrestrial fluxes of gaseous (including CO2 and water vapor) and non-gaseous (particulate and dissolved organic matter, nutrients, and water) materials and energy between the land and the atmosphere and sea; 2) to evaluate the impacts of variation in radiation, climate, ocean circulation, ocean temperature, and sea ice position and extent on terrestrial processes, including those that have feedback on atmospheric and ocean processes; and 3) to provide high-resolution products (atmospheric, ice, ocean, and terrestrial) and related datasets, relevant to the patterns and controls of terrestrial and oceanic processes, for use in future analyses.

Project Location

Products and Resources Description

Journal Publications

Cassano, E.N., and J.J. Cassano, "Synoptic forcing of precipitation in the Mackenzie and Yukon river basins", Int. J. Climatology 30: 658-674 (2010), doi:10.1002/joc.1926.

Higgins, M.E., and J.J. Cassano, "Impacts of reduced sea ice on winter Arctic atmospheric circulation, precipitation, and temperature", J. Geophys. Res. 114 (2009), D16107, doi:10.1029/2009JD011884.

Dates

-

Members

Lead Principal Investigator

Dr. Walter Oechel
San Diego State University

Principal Investigator

Dr. John Cassano
University of Colorado Boulder

Principal Investigator

Dr. Larry Hinzman
U.S. Office of Science and Technology Policy

Principal Investigator

Dr. John Kimball
University of Montana Flathead Lake Biological Station

Principal Investigator

Dr. Wieslaw Maslowski
Naval Postgraduate School

Keywords

study of the northern alaska coastal system